Перейти в оглавление выпуска:
2022. T. 127. Vyp. 5.
Go to the issue table of contents:
2022. T. 127. Vyp. 5.

Данные статьи

Description

DOI

No

Авторы:

Authors:

Ipatova V.I., Lazareva A.M.

Ключевые слова:

Keywords:

bioassay, Scenedesmus quadricauda, Thalassiosira weissflogii, initial population den-sity, culture age, potassium dichromate, aluminum chloride, toxicity, concentration, dose

Скачать pdf статьи:

Download the article:

Ссылка для цитирования:

For citation:

Ipatova V.I., Lazareva A.M. , Concentration or Dose of Toxicant in Bioassay Using Microalgae // Byul. MOIP. Otd. biol. 2022. T. 127. Vyp. 5. S. 54-65

Concentration or Dose of Toxicant in Bioassay Using Microalgae

The effect of salts of heavy chromium metal and light aluminum metal was studied under different modes of toxic exposure for test objects – cultures of the freshwater green microalgae Scenedesmus quadricauda (Turp.) Breb. and marine diatom microalgae Thalassiosira weissflogii (Grunow) Fryxell et Hastle. An experimental model was used to analyze the survival of cultures under extreme environmental conditions with a change in the initial density of the population, the age of the culture at the time of the toxicant addition to the growing culture, the concentration of toxicants in the medium, and the dose per cell. It has been shown that the periodic addition of chromium during the experiment, while maintaining its constant dose, the toxic effect changes little of over time compared to the traditionally accepted single addition of the toxicant at the beginning of the experiment. It has been established that with an increase in time of adding aluminum to a growing culture, which corresponds to the age of the culture, its toxicity decreases. To carry out the bioassay procedure, it is necessary to take a young 5–7 day old test culture that is at the logarithmic stage of growth, and a mature 14-day and old 28-day culture can significantly underestimate the toxicity of the test substance. With an increase in the initial density of the population from 25 thousand cells/ml to 1–2 million cells/ml, the toxicity of metal salts decreased. The initial population density of 25 thousand cells/ml, during bioassay, allows a more adequate assessment of the toxicity of the substances.

References

  • Burlakova Z.P., Krupatkina D.K., Lanskaya L.A., Yafarova D.L. Vliyanie plotnosti populyatsii morskikh odnokletochnykh vodoroslei na potreblenie fosfora i osnovnye fiziologicheskie pokazateli kletok // Vzaimodeistvie mezhdu vodoi i zhivym veshchestvom: Tr. Mezhdunar. simpoz., Odessa, 6-10 okt. 1975 g. M., 1979. T. 1. S. 231–235.
  • Ipatova V.I., Prokhotskaya V.Yu., Kolomenskaya E.E. Vliyanie nachal’noi plotnosti populyatsii na proyavlenie toksichnosti veshchestv v ispytaniyakh s ispol’zovaniem mikrovodoroslei // Toksikologicheskii vestnik. 2011. № 2. S. 51–55.
  • Metodicheskie ukazaniya po razrabotke normativov kachestva vody vodnykh ob”ektov rybokhozyaistven-nogo znacheniya, v tom chisle normativov predel’no dopustimykh kontsentratsii vrednykh veshchestv v vodakh vodnykh ob”ektov rybokhozyaistvennogo znacheniya / Pod red. S.A. Sokolovoi. M., 2011. 165 s.
  • Terekhova V.A., Voronina L.P., Gershkovich D.M., Ipatova V.I., Isakova E.F., Kotelevtsev S.V., Poputnikova T.O., Rakhleeva A.A., Samoilova T.A., Filenko O.F. Biotest-sistemy dlya zadach ekologicheskogo kontrolya: Metodicheskie rekomendatsii po prakticheskomu ispol’zovaniyu standartizovannykh test-kul’tur. M., 2014. 48 s.
  • Terekhova V.A., Gershkovich D.M., Gladkova M.M., Ipatova V.I., Isakova E.F., Nikolaeva O.V., Rakhleeva A.A., Fedoseeva E.V. Biotestirovanie v ekologicheskom kontrole / Pod red. V.A. Terekhovoi. M.: GEOS, 2017. 70 s.
  • Filenko O.F., Isakova E.F., Gershkovich D.M., Ipatova V.I., Dmitrieva A.G. Biotestirovanie kachestva sredy s ispol’zovaniem gidrobiontov. Razdel bol’nogo praktikuma po gidrobiologii: Uchebno-metodicheskoe posobie. M., 2015. 44 s.
  • Demirezen D., Aksoy A., Uruc K. Effect of population density on growth, biomass and nickel accumulation capacity of Lemna gibba (Lemnaceae) // Chemosphere, 2007. Vol. 66. P. 553–557.
  • Dosnon-Olette R., Couderchet M., Arfaoui A., Sayen S., Eullaffroy Ph. Influence of initial pesticide concentrations and plant population density on dimethomorph toxicity and removal by two duckweed species // Sci. Total Environ. 2010. Vol. 408. P. 2254–2259.
  • Franklin N.M., Stauber J.L., Apte S.C., Lim R.P. Effect of initial density on the bioavailability and toxicity of copper in microalgal bioassays // Environ. Toxicol. Chem. 2002. Vol. 21. P. 742–751.
  • Gillmore M., Golding L., Angel Br., Adams M., Jolley D. Toxicity of dissolved and precipitated aluminium to marine diatoms // Aquat. Toxicol. 2016. Vol. 174. P. 82–91.
  • Kaplan H. A model for the toxic dose under time-varying concentration // J. Hazard. Mater. 2009. Vol. 167. N 1–3. P. 351–356.
  • Kinley C.M., Iwinski K.J., Hendrikse M., Geer T.D., Rodgers J.H. Jr. Cell density dependence of Microcystis aeruginosa responses to copper algaecide concentrations: Implications for microcystin-LR release // Eco-toxicol. Environ. Saf. 2017. Vol. 145. P. 591–596.
  • McLarnon-Riches C.J., Rolph C.E, Greenway D.L.A., Robinson P.K. Effects of environmental factors and metals on Selenastrum capricornutum lipid // Phytochemistry. 1998. Vol. 49. N 5. P. 1241–1247.
  • Simões-Gonçalves M.L.S., Vilhena M.F.C., Sampayo M.A. Effect of nutrients, temperature and light on uptake of cadmium by Selenastrum capricornutum Printz // Water Res. Vol. 22. N 11. P. 1429–1435.
  • Vasseur P., Pandard P., Burnel D. Influence of some experimental factors on metal toxicity to Selenastrum capricornutum // Envir. Toxicol. 1988. Vol. 3. N 3. P. 331–343.
  • Zhang R., Saito R., Mano Y., Kanamori M., Sonoda Y, Kumabe T., Tominaga T. Concentration rather than dose defines the local brain toxicity of agents that are effectively distributed by convection-enhanced delivery // J. Neurosci. Methods. 2014. Vol. 222. P. 131–137.

Список литературы

  • Burlakova Z.P., Krupatkina D.K., Lanskaya L.A., Yafarova D.L. Vliyanie plotnosti populyatsii morskikh odnokletochnykh vodoroslei na potreblenie fosfora i osnovnye fiziologicheskie pokazateli kletok // Vzaimodeistvie mezhdu vodoi i zhivym veshchestvom: Tr. Mezhdunar. simpoz., Odessa, 6-10 okt. 1975 g. M., 1979. T. 1. S. 231–235.
  • Ipatova V.I., Prokhotskaya V.Yu., Kolomenskaya E.E. Vliyanie nachal’noi plotnosti populyatsii na proyavlenie toksichnosti veshchestv v ispytaniyakh s ispol’zovaniem mikrovodoroslei // Toksikologicheskii vestnik. 2011. № 2. S. 51–55.
  • Metodicheskie ukazaniya po razrabotke normativov kachestva vody vodnykh ob”ektov rybokhozyaistven-nogo znacheniya, v tom chisle normativov predel’no dopustimykh kontsentratsii vrednykh veshchestv v vodakh vodnykh ob”ektov rybokhozyaistvennogo znacheniya / Pod red. S.A. Sokolovoi. M., 2011. 165 s.
  • Terekhova V.A., Voronina L.P., Gershkovich D.M., Ipatova V.I., Isakova E.F., Kotelevtsev S.V., Poputnikova T.O., Rakhleeva A.A., Samoilova T.A., Filenko O.F. Biotest-sistemy dlya zadach ekologicheskogo kontrolya: Metodicheskie rekomendatsii po prakticheskomu ispol’zovaniyu standartizovannykh test-kul’tur. M., 2014. 48 s.
  • Terekhova V.A., Gershkovich D.M., Gladkova M.M., Ipatova V.I., Isakova E.F., Nikolaeva O.V., Rakhleeva A.A., Fedoseeva E.V. Biotestirovanie v ekologicheskom kontrole / Pod red. V.A. Terekhovoi. M.: GEOS, 2017. 70 s.
  • Filenko O.F., Isakova E.F., Gershkovich D.M., Ipatova V.I., Dmitrieva A.G. Biotestirovanie kachestva sredy s ispol’zovaniem gidrobiontov. Razdel bol’nogo praktikuma po gidrobiologii: Uchebno-metodicheskoe posobie. M., 2015. 44 s.
  • Demirezen D., Aksoy A., Uruc K. Effect of population density on growth, biomass and nickel accumulation capacity of Lemna gibba (Lemnaceae) // Chemosphere, 2007. Vol. 66. P. 553–557.
  • Dosnon-Olette R., Couderchet M., Arfaoui A., Sayen S., Eullaffroy Ph. Influence of initial pesticide concentrations and plant population density on dimethomorph toxicity and removal by two duckweed species // Sci. Total Environ. 2010. Vol. 408. P. 2254–2259.
  • Franklin N.M., Stauber J.L., Apte S.C., Lim R.P. Effect of initial density on the bioavailability and toxicity of copper in microalgal bioassays // Environ. Toxicol. Chem. 2002. Vol. 21. P. 742–751.
  • Gillmore M., Golding L., Angel Br., Adams M., Jolley D. Toxicity of dissolved and precipitated aluminium to marine diatoms // Aquat. Toxicol. 2016. Vol. 174. P. 82–91.
  • Kaplan H. A model for the toxic dose under time-varying concentration // J. Hazard. Mater. 2009. Vol. 167. N 1–3. P. 351–356.
  • Kinley C.M., Iwinski K.J., Hendrikse M., Geer T.D., Rodgers J.H. Jr. Cell density dependence of Microcystis aeruginosa responses to copper algaecide concentrations: Implications for microcystin-LR release // Eco-toxicol. Environ. Saf. 2017. Vol. 145. P. 591–596.
  • McLarnon-Riches C.J., Rolph C.E, Greenway D.L.A., Robinson P.K. Effects of environmental factors and metals on Selenastrum capricornutum lipid // Phytochemistry. 1998. Vol. 49. N 5. P. 1241–1247.
  • Simões-Gonçalves M.L.S., Vilhena M.F.C., Sampayo M.A. Effect of nutrients, temperature and light on uptake of cadmium by Selenastrum capricornutum Printz // Water Res. Vol. 22. N 11. P. 1429–1435.
  • Vasseur P., Pandard P., Burnel D. Influence of some experimental factors on metal toxicity to Selenastrum capricornutum // Envir. Toxicol. 1988. Vol. 3. N 3. P. 331–343.
  • Zhang R., Saito R., Mano Y., Kanamori M., Sonoda Y, Kumabe T., Tominaga T. Concentration rather than dose defines the local brain toxicity of agents that are effectively distributed by convection-enhanced delivery // J. Neurosci. Methods. 2014. Vol. 222. P. 131–137.